“X depends on or is built up on Y” does not imply “X is Y”. Concepts, laws, techniques, etc. can depend or be higher-order expressions of QM without being QM. If you started asking a QM scientist about tensile strength or the Mohs scale they would (rightly) be confused.
Yes, of course. Coloumb and Maxwell had no idea about QM when they were developing their ideas. Not to mention that these higher-order abstractions are just as valid as QM (up to a point, but so is QM). Depening on the application, you’d want to use a different abstraction. EM is perfect for everyday use, as well as all the way down to the microscale.
My point is that EM is explained by QM, and therefore supercedes it. You could use QM to solve every EM problem, it’d just be waaaaay too difficult to be practical.
I feel like you’re using “supercede” differently to the rest of us. You’re getting a hostile reaction because it sounded like you’re saying that EM is no longer at all useful because it has been obsoleted (superceded) by QM. Now you’re (correctly) saying that EM is still useful within its domain, but continuing to say that QM supercedes it. To me, at least, that’s a contradiction. QM extends EM, but does not supercede it. If EM were supercedes, there would be no situation in which it was useful.
It’s electromagnetism you mean, not quantum mechanics.
Guess what electromagnetism turned out to be
They’re different things. The OP means electromagnetism, Coulomb’s law has nothing to do with quantum mechanics, it’s classical physics.
Okay but tell me, what theory superceded electromagnetism?
Sure, EM is still useful, I use it in my work, but in the end, it all boils down to QM.
“X depends on or is built up on Y” does not imply “X is Y”. Concepts, laws, techniques, etc. can depend or be higher-order expressions of QM without being QM. If you started asking a QM scientist about tensile strength or the Mohs scale they would (rightly) be confused.
Yes, of course. Coloumb and Maxwell had no idea about QM when they were developing their ideas. Not to mention that these higher-order abstractions are just as valid as QM (up to a point, but so is QM). Depening on the application, you’d want to use a different abstraction. EM is perfect for everyday use, as well as all the way down to the microscale.
My point is that EM is explained by QM, and therefore supercedes it. You could use QM to solve every EM problem, it’d just be waaaaay too difficult to be practical.
I feel like you’re using “supercede” differently to the rest of us. You’re getting a hostile reaction because it sounded like you’re saying that EM is no longer at all useful because it has been obsoleted (superceded) by QM. Now you’re (correctly) saying that EM is still useful within its domain, but continuing to say that QM supercedes it. To me, at least, that’s a contradiction. QM extends EM, but does not supercede it. If EM were supercedes, there would be no situation in which it was useful.